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This document is intended for an FPS (Federal Public Service) that wishes to integrate the BOSA signature solution ‘Federal Trust Services’ (FTS). It allows users (Belgian citizens or residents) who are surfing on the FPS website to sign a document with their eID or foreigner card. This document, for example a PDF or XML, has been prepared or created by the FPS.

The whole signing process is handled by BOSA. The FPS only has to upload the unsigned document to BOSA, redirect the user to BOSA and wait for a callback; then the signed document can be downloaded.
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The goal is to make eSignature integration available using 4 generic steps for customers of the service. From a customer perspective, the flow is as follows (customer is “FPS”):
[image: ]













Steps needed from a FPS perspective 
1. Upload the document to be signed to the private storage bucket 
2. Request a Token to enable signing of the document 
3. Redirect to the end user – based on the acquired Token 
--- (User Signs the document using BOSA webapp, followed by a callback to the FPS) ---
4. Download the signed document 
5. (Delete documents) 
How the document is signed is defined by the second step (request Token). This step includes the name for the signed document, configuration profiles that should be used, the type of signature, and whether the user can download the signed document or not. The call also allows to force the user interface language to be used if desired.
	TA
	TEST
	continuously deployed from commits to “developer” code branch.

	QA
	QUALITY
	continuously deployed from commits to “master” code branch.

	INT
	INTEGRATION
	deployed from stable release.

	PROD
	PRODUCTION
	deployed from stable release. IP filtering will be required.


The maximum time to redirect end-users to the FTS is 5 minutes and the maximum time to sign is 5 hours. If the browser session exceeds 5 hours, the end user will be notified that the token has become invalid.
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In order to sign a document using eID in a browser, the end user needs software that facilitates the communication between the card and the browser. The signing service provides 2 new components to sign with eID: a web browser extension and a local component. 
· For citizens installing the software does not require admin rights. The signing procedure will take care of the installation if the components are missing, and will do so in a non-intrusive manner (the sign flow is not broken). 
· For organizations an msi installer is available for deployment by IT at https://eid.belgium.be/en/download/beidconnect . 
The environments that are the supported:
· windows/mac/linux
· firefox/chrome (+edge)/safari/internet explorer
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	TA
	TEST
	continuously deployed from commits to “developer” code branch.

	QA
	QUALITY
	continuously deployed from commits to “master” code branch.

	INT
	INTEGRATION
	deployed from stable release.

	PROD
	PRODUCTION
	deployed from stable release. IP filtering will be required.



Day-to-Day development
· Development is done on “developer” code branch.
· Changes are deployed automatically to TA. 
· New features are developed here. 
· Bug fixing is done here. 
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· [bookmark: _Toc78283722]Completed features are pushed to the “master” code branch. 
· Changes are deployed automatically to QA. 
· Development is done on TA, QA receives the changes when feature complete. 
· Stable releases are created from QA: a consistent set of features is tagged on QA, it can
· then be deployed to INT for testing and to PROD when integration testing proves to be successful. 
[bookmark: _Toc78555557]Deliverables and artifacts
· Development is done in an open source development model. 
· The service is based on Docker containers.
· The BOSA service is based on a stable version that passed integration testing. 
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Code repositories 
BOSA uses 2 code repositories. 
GitLab: internal 
· BOSA hosted and private 
· Gitlab is the primary repository where BOSA development is done 
· It has 2 code branches: “develop” and “master” 
· The repository is integrated with the build & deploy pipeline that is used to host the service for all environments, which is why it is private 
· The TA environment tracks the “develop” branch at any time 
· The QA environment tracks the “master” branch at any time 
· The INT and PROD environments are deployed using static/stable versions of the service that are tagged on the master branch 
GitHub: public 
· Public code repository 
· Automated mirror of the BOSA GitLab “master” branch 
· Stable release tags are mirrored as well: the version that is available on PROD can be checked out from the code 
· Repositories 
· https://github.com/Fedict/fts-test-environment 
Script for local deployment of the actual signing service for testing 
· https://github.com/Fedict/fts-mintest    
Code for mintest code example, a basic implementation how to call the service including several base scenario’s 
· https://github.com/Fedict/fts-documentation
Repository for documentation and architecture documents 
· https://github.com/Fedict/fts-sign-validation  
Signing and validation engine 
· https://github.com/Fedict/fts-gui-sign
Signing frontend application (webflows) 
· https://github.com/Fedict/fts-esealing  
Sealing application 
· https://github.com/Fedict/fts-eidlink  
Client application (BeidConnect – repository to be renamed) 
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URLs are based on QA. 
· Replace QA with TA or INT for those environments 
· Remove QA in the URL for PROD
Example:
· PROD: https://dp.fts.bosa.belgium.be 
· TA: https://dp.ta.fts.bosa.belgium.be
· QA: https://dp.qa.fts.bosa.belgium.be
INT: https://dp.int.fts.bosa.belgium.be
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· https://dp.qa.fts.bosa.belgium.be 
· URL for the storage bucket
· API endpoint
· WEBUI to manage the bucket (including password reset)
· MINIO webUI available
· https://sign.qa.fts.bosa.belgium.be 
· URL for the signing application
· API endpoint
· https://validate.qa.fts.bosa.belgium.be/signandvalidation/signing/getTokenForDocument 
· URL for Token request
· API endpoint
· https://sign.qa.fts.bosa.belgium.be/sign (yet to be launched) 
· WEBUI with manual procedure (upload and sign)
· https://mintest.qa.fts.bosa.belgium.be 
· Hosted version of fts-test-environment application
· Implements full flow using the storage bucket and redirection
· https://validate.qa.fts.bosa.belgium.be/signandvalidation/swagger-ui.html 
· Swagger specification REST API
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Your storage bucket is a private storage location that holds the files to be signed when using eSignature, and configuration data that consists of customer-defined profiles that allow you to define: 
· how XML files are visualized when signing (XSLT) 
· how visible signature fields should be added to PDF documents 
BOSA will clean out old documents that were not deleted by the users of the service, except the configuration profiles. For this reason, every bucket has a mandatory “config” directory that is exempt from cleaning and should only be used to hold the XML and PDF profiles mentioned above. 
To access the bucket an account is needed. To access the config directory a specific, second account is used. The reason for the split is that visible signature fields actually add content to the document when signing. Using a second account allows for more scrutiny who can define and alter this. It is possible to use the same password for both accounts if the split is not a requirement. 
As BOSA offers 4 environments which accounts each, a fixed naming scheme is used based on the chosen name for the storage bucket: 
· based on the basename buckets will be created all environments;
· per bucket 2 accounts are configured o one for managing the files that require signing as well as the signed versions;
· another one to manage the configuration files for XLST visualization and to create visual signature fields in PDF documents. 
The account passwords will be set to a default and must be changed before usage. The naming scheme used is as follows: 
	environment
	bucket
	account
	Account-config

	TA
	bucket 
	Bucket-ta
	bucket-config-ta

	QA
	bucket 
	Bucket-qa
	bucket-config-qa

	INT
	bucket 
	Bucket-int
	bucket-config-int

	PROD
	bucket 
	bucket
	bucket-config



It is possible to request multiple storage buckets should business requirements demand this.
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To instruct the service what level of signature should be generated on a document, base profiles have been defined for common use cases. The profile definitions are available on https://github.com/Fedict/fts-sign-validation/tree/master/parameters/signature. 
The current profiles that are readily available are:
	PROFIELNAAM
	PROFIEL
	FORMAAT
	REMARK

	CADES_1
	CAdES_BASELINE_B
	ASiC_S
	 

	CADES_2
	CAdES_BASELINE_B
	ASiC_E
	 

	CADES_LTA
	CAdES_BASELINE_LTA
	ASiC_E DETACHED
	 

	CADES_LTA_ENVELOPING
	CAdES_BASELINE_LTA
	ENVELOPING
	 

	PADES_1
	PAdES_BASELINE_B
	ENVELOPED
	 

	PADES_LTA
	PAdES_BASELINE_LTA
	ENVELOPED
	 

	PADES_LTA_EXP_ALLOW
	PAdES_BASELINE_LTA
	ENVELOPED
	ALLOWS SIGNING WITH EXPIRED CERTIFICATES. NOT AVAILABLE IN INT/PROD

	XADES_1
	XAdES_BASELINE_B
	ENVELOPED
	 

	XADES_2
	XAdES_BASELINE_B
	ENVELOPING
	 

	XADES_LTA
	XAdES_BASELINE_LTA
	ENVELOPED
	 

	XADES_LTA_EXP_ALLOW
	XAdES_BASELINE_LTA
	ENVELOPED
	ALLOWS SIGNING WITH EXPIRED CERTIFICATES. NOT AVAILABLE IN INT/PROD



For reference the resulting signatures include the following elements per international standards:
	B:      SIGNATURE WITH CERTIFICATE CHAIN

	T:      B + TIME STAMP

	LT:    T + REVOCATION DATA

	LTA: LT + 2ND TIME STAMP




While the B and LTA options should cover customer needs, T and/or LT profiles can easily be added.
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IP addresses behind CallBackUrl.
	TA
	ECOSYS-NONPUB-TA
	193.191.245.151

	QA
	ECOSYS-NONPUB-QA  
	193.191.245.150

	INT
	ECOSYS-NONPUB-QA  
	193.191.245.150

	PROD
	ECO-HIDE-PR-PUB	
	193.191.245.204
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2.7. Example code
BOSA DT maintains a code example how to integrate with the service for eSignatures that covers the common use cases. The source code is publicly available on https://github.com/Fedict/fts-test-environment/tree/master/mintest  The example itself is deployed and hosted on all environments except PROD and can be accessed and tested using the following URL (example URL is for QA): https://mintest.qa.fts.bosa.belgium.be. 
A developer-centric guide explain this into more detail is available at https://github.com/Fedict/fts-documentation/tree/master/FPS_info (file: BOSA signature solution.docx).
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3.1. BOSA S3 server
BOSA provides an Amazon S3 compatible server: MinIO [1].
The FPS uses this server to:
· Upload unsigned documents and additional files such as XSLT files or  ‘PDF signature profiles’
· Download signed documents
Delete the unsigned and signed documents
When the FPS registers for the signature solution, it receives a username and password for this BOSA S3 server. With this, the FPS can then upload, download and delete documents.
It is important to note that this BOSA S3 server is not intended for long time storage: the space allocated to an FPS is limited, and the FPS itself is responsible for timely deleting documents that are no longer needed.
There are free client SDKs available for several languages (Java, python, .NET, …) on [2].
An FPS can use these to implement the upload/download/delete calls.
Implementation note: to connect to an S3 server, typically 3 things are needed: a ‘bucket name’ (this can be seen as a directory on the S3 server), a username and a password.
For the BOSA S3 server however, the ‘bucket name’ and username are the same, therefore only a username and password are provided during the registration.
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This is a REST call (a HTTP POST containing a json string) from the FPS to the BOSA DSS server; the BOSA DSS server will return a ‘token’.
This token is a string that contains a.o. the names of the unsigned (‘in’) and signed (‘out’) documents. It is cryptographically protected so they can’t be modified. Note: that it has nothing to do with OAuth or OpenID.
For the FPS, this token is transparent and does not have to be parsed/interpreted/.. It only has to be sent in the HTTP redirect call to the BOSA DSS front-end server.
Here is an example of the contents of a getToken request:
	{
  "name":"minfin",
  "pwd":"U84SnLEQvp",
  "in":"test.xml",
  "xslt":"test.xslt",
  "out":"signed_test.xml",
  "prof":"XADES_1"
  "lang": "fr",
  "noDownload": true,
  "policyDescription": "The Description",
  "policyDigestAlgorithm": "SHA512",
  "policyId": "http://URL_OF_THE_POLICY",
  "psfC": "1,30,20,180,60",
  "psfN": "signature_1",
  "psfP": true,
  "psp": "pspFileName.psp",
  "": true,
  "signTimeout": 120,
  "allowedToSign": [
    {
      "nn": "BELGIAN_NATIONAL_NUMBER"
    }
  ]
}



	JSON Field
	Mandatory
	Values 
	Description

	name
	Yes
	aS3buckName
	The name of the bucket where the files (pdf/xml/xlst/psp) are stored

	pwd

	Yes
	Ag00dPasswOrd!
	The password of the bucket where the files are stored

	in
	Yes
	Test.xml / test.pdf
	The name of the input file (stored on the bucket)

	xslt
	  No
	Test.xslt
	If the “in” file is of xml format, the “xlst” will be used to pimp the display of the “in” file as HTML.

	out
	Yes
	Signed.xml / Signed.pdf
	The output file name on the bucket. (The file extension should be the same as the “in” file extension)

	prof
	Yes
	XADES_1 / PADES_LTA
	The signature profile requested. It is linked to the “in” file type. BOSA provides a list of the available values and their meaning.

	lang
	No
	de/du/en/fr
	The language that will be used to display the visible part of a signature in a PDF document

	noDownload
	No
	true/false
	If “true”, the signed will not be allowed to download the signed file

	policyId
	No
	http://......
	Only for XML documents. If present it will be added to the signature.

	policyDescription
	No
	Some text
	Only for XML documents. If present it will be added to the signature.

	policyDigestAlgorithm
	No
	SHA512/SHA256/…
	Only for XML documents. If present it will be added to the signature.

	psfC
	No
	1,30,20,180,60 / default
	The place and size where to display the visible signature in a PDF document (Page#/X/Y/Width/Height) or “default”

	psfP
	No
	true / false
	If “true”, the picture present on the EID card will be added to the visible signature of a PDF

	psfN
	No
	signField1
	If defined, the visible information of a PDF signature will be place in an existing field (Acroform) already present in the “in” file.

	psp
	No
	test.psp
	If present, defines the name of a “bucket” file containing a graphical layout used to render the visible signature of a PDF.

	requestDocumentReadConfirm
	No
	true/false
	If “true”, display a “I have read this document.*” checkbox to the sign user interface that must be checked before signature is allowed

	allowedToSign
	No
	
	A list of “National Numbers” if EIDs that are allowed to sign the document

	signTimeout
	No. If not defined, value is 120 seconds.
	0 to 10000 seconds
	If the time between a user clicks on the “I want to Sign” button and the moment he signs the document is greater than the number of seconds defined by “signTimeout” the signature will be rejected. 
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After the FPS has uploaded the document and obtained the token, it will do a HTTP redirect of the User’s browser to the BOSA DSS front-end server; this will handle the actual signing process.
This redirect contains the following parameters:
· The token obtained in the getToken call: this is at the end of the URL path 
· A RedirectUrl to the FPS: this is a query parameter
· A language parameter: this is a query parameter. Values: en, nl, fr, de
· A name parameter: this is used to show the FPS name in the User’s browser
Example of a redirect URL:
	https://sign.ta.fts.bosa.belgium.be/sign/SDZEgF935d6e9.DKEi8D7nFDZz8EEZLazemJFeLIE.2FIDsdf987dILEJFd?redirectUrl=http%3A%2F%2F%2Feservices.minfin.fgov.be%2Fcallback%3Ffilename%3Dsigned_test.pdf&language=en&name=FPS%20XXX



With the token, the user’s browser will download the unsigned document and, if present, the XSLT file from the BOSA DSS server. It will then display the document (the PDF, the XML or the XLST-transformed XML) and read out the certificates from the User’s eID/foreigner card. It will then ask to enter the PIN and proceed with the actual signing.
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After the document is signed and available on the BOSA S3 server, the User’s browser will do a callback to the callback URL specified in the redirect (see above). The callback URL is completely specified by the FPS and can contain query parameters like a session ID.
Next to the signed document, a json file is added to the BOSA S3 server that contains the signing certificate and the simple and the detailed validation report. The filename of this json file is the output filename of the signed document, appended with ".validationreport.json" (e.g. if the filename of the signed document = "8uSOFNM03ns4F8N.xml" then filename of the json file = "8uSOFNM03ns4F8N.xml.validationreport.json") Just like the other files, it is up to the FPS to delete this json file.
If the validation report will be used/saved by the FPS, it should be downloaded and then deleted from the S3 at the same time as the signed document. This is to avoid the case that a document with the same name should (accidentally) be used while the validation report of the previous signed document is still present. In case of doubt, it is possible to link both together by means of the reference-id as shown below:
	Signed document:[image: signed_doc.png]
	Validation report:
[image: validation_report.png]



In case of an error, the following parameters are added:
· err: an error string, e.g. CERT_REVOKED 
· details: a string with error details, this parameter is optional
· ref: a unique reference
Examples of a full callback URL: 
	http://eservices.minfin.fgov.be/callback?session=349317359



	http://eservices.minfin.fgov.be/callback?session=762087326&ref=20210423092112378&err=CERT_REVOKED



	http://eservices.minfin.fgov.be/callback?session=650807315&ref=20210423091821774&details= exp.%20date%20=%202017.05.29%2022:00:00&err=SIGN_CERT_EXPIRED



The bold part is the original callback URL specified by the FPS in the redirect, the rest has been added by the browser’s javascript.
Below is a list of the error strings that have been defined so far.
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URL: https://github.com/Fedict/fts-documentation/tree/master/FPS_info  (file: error_constants.txt). 
Error codes that the service might include on callback to the relying party.
	Error constant
	Explanation

	BEID_CONNECT_ERROR
	Couldn't connect to the eID card

	NO_READER
	No reader found on the user's PC

	UNSUPPORTED_READER
	unsupported smart card reader

	SIGNATURE_FAILED
	eID card returned an invalid signature

	CARD_BLOCKED
	eID card blocked

	CARD_ERROR
	eID card error

	USER_CANCELLED
	User cancelled the signing operation

	SIGN_CERT_EXPIRED
	Signing certificate expired

	CERT_CHAIN_INCOMPLETE
	No or incomplete certificate chain

	NO_SIGN_CERT
	No signing certificate provided

	INVALID_SIG_DATE
	Signing date out of bounds

	INVALID_S3_LOGIN
	Invalid user name or password

	NO_CERT_TO_VALIDATE
	The certificate is missing

	NO_DOC_TO_VALIDATE
	DSSDocument is null

	NO_TOKEN
	Required parameter token not provided

	CERT_REVOKED
	Certificate (probably the signing cert) revoked

	INTERNAL_ERR
	Unexpected error occured

	INVALID_DOC
	Document validation (after signing) failed

	UNKNOWN_PROFILE
	Unknown signature profile

	EMPTY_PARAM
	Empty (null) parameter in request

	INVALID_TOKEN
	Invalid token in request

	PARSE_ERROR
	Couldn't parse request

	NOT_ALLOWED_TO_SIGN
	Used certificate is not allowed to sign

	SIGN_PERIOD_EXPIRED
	The “SignDocumentForToken” call was executed too late (See “signTimeout”)


[bookmark: _Toc94631786][bookmark: _Toc95480257]
3.6. PDF visible signatures
For PDF signing, it is possible to create visible a signature field or to use an existing one.
There are quite a number of options (image, text, colors, ..) that can be specified. Because the token is limited in size it has been decided to use a ‘PDF signature profile’ file (see below) that is to be uploaded to the S3 server to hold most of the parameters and only provide a minimum of parameters in the getTokenForDocument call.
1. So the getTokenForDocument call (and therefore the token) can only contain these parameters:
· psp: the name of the ‘PDF signature profile’ file
· psfN: the name of an existing PDF visible signature field
· psfC: the ‘coordinates’ for a new PDF visible signature field, this is either
· the string “default” to use the default coordinates that are specified in the ‘PSP’ file
· a comma-separated value of 5 integers: page, the x and y coordinates, width and height
· psfP: a boolean, if true then the photo from the eID card is read and used as image
· lang: the language to be used for the text in the signature field, this language must be specified in the “texts” field of the PSP file
All parameter are optional, if none are specified then an invisible PDF signature is made.
If psfN or psfC (they are mutually exclusive) are specified then a visble PDF signature is made/used.
 This is an example of the contents of a getTokenForDocument request:
	{
  "name":"minfin",
  "pwd":"U84SnLEQvp",
  "in":"test.pdf",
  "out":"signed_test.pdf",
  "psp":"minfin1.psp",
  "psfC":"1,20,30,180,60",
  "psfP":true,
  "lang":"en"
}



So the psfC value means: put a signature field on the 1st page, at coordinates (20, 30) from the left top corner of the page, with width 180 and height 60
2. The PSP (PDF signature profile) file is a json file as in the example below:
	{
  "bgColor" : "#D0D0D0",
  "texts" : {
    "en" : "Signed by %gn% %sn%",
    "de" : "Unterzeichnet von %gn% %sn%",
    "nl" : "Getekend door %gn% %sn%",
    "fr" : "Signé par %gn% %sn%"
  },
  "font": "freescpt",
  "textSize" : 14,
  "textPadding" : 20,
  "textAlignH" : "CENTER",
  "textAlignV" : "MIDDLE",
  "textPos" : "BOTTOM",
  "textColor" : "#0000FF",
  "defaultCoordinates" : "1,30,20,120,60",
  "imageDpi" : 400,
  "image" : "ZGVmYXVsdA=="
}



Remark: this profile json file is optional, if not present then default values are taken
The “bgColor” and “textColor “values for the RGB color code scheme, e.g. “#0000FF” = blue.
The “texts” can contain the following macros that will be replaced by information from the Subject DN of the signing certificate:
· %gn% : this is replaced by the Given Name in the user’s certificate
· %sn%: this is replaced by the Surname in the user’s certificate
· %nn%: this is replaced by the national numbers (subject's "SERIALNUMBER") in the user’s certificate
· %d(XXX)%: this is replaced by the signing date, XXX is according to Java’s SimpleDateFormat [4]
e.g. %d(“d MMMM yyyy)% is replaced by e.g. “4 March 2021” in English
Example of a Subject DN Certificate:
commonName=Tom Test,serialNumber=73040102749,givenName=Tom,surname=Test,countryName=BE
For the “font”, a number of fonts will be installed and their names documented. Currently there is the DSS default font and a “freescpt” font that resembles handwriting.
The “textAlignH” is the horizontal text alignment and can be “LEFT”, “CENTER”, “RIGHT”
Default value is “NONE”, see [5]
The “textAlignV” is the vertical text alignment and can be “TOP”, “MIDDLE”, “BOTTOM” 
Default value is “NONE”, see [6]
The “textPos” defined the position of the text relative to the image: “TOP”, “BOTTOM”, “LEFT”, “RIGHT”
The “image” is a base64 image, the type (png, jpg, …) is automatically detected;
or it can be the base64 encoding of the word “default”: "ZGVmYXVsdA==".
In case the “psfP” parameter is set to true in the getTokenForDocument call, then the photo of the eID card is used and the “image” value in the PSP is ignored.
All values are optional; in case of absence a default is used. If no “image” is specified then no image is used.
3. Example query parameters in the redirect URL to BOSA
· psfN=signature_1        # PDF signature field name
· psfC=1,200,50,300,50    # PDF signature field coordinates: page,x,y,width,height
· psfP=true               # if the photo should be read from the eID and used in the signature field (this is because the token can't be parsed by the front-end)
Remarks:
· psfN and psfC cannot be used together
· In case of psfN, the PDF should contain a visible signature field with this value
· If (a) visible signature field(s) is/are present, then either psfN or psfC must be specified
4. Current restrictions:
· With the default font, the “textSize” parameter seems to be ignored
· The “freescpt” font is not by default installed on Linux
· When the image is on top or below the text, it expands or contracts horizontally in order to take the full width
Request user to validate lecture of the document before signing
[bookmark: _Toc94631787][bookmark: _Toc95480258]3.7.  Add signing policies
This option is only valid when signing an XML. Whether the signing part of the XML should include signing policies. A set of parameters can be added to the "getTokenForDocument" call.
· policyId: string containing the URL of the signature policies. This URL must be public and immutable since it is part of the signature, and must be accessible during signature validation.
· policyDescription: string containing a "short" description.
· policyDigestAlgorithm: string containing the hashing algorithm to hash the signature policies file referenced in the “policyId” parameter.
If you wish to add a signing policy, then both "policyId" and "policyDigestAlgorithm" must be provided. "policyDescription" is optional.
{
  "name": "minfin",
  "pwd":"U84SnLEQvp",
  "in":"test.pdf",
  "out":"signed_test.pdf",
  "policyId": "http://[url to the signing policies file].pdf",
  "policyDescription": "Policy Description",
  "policyDigestAlgorithm": "SHA512"
}
[bookmark: _Toc94631788][bookmark: _Toc95480259]3.8. Ask the user to validate the reading of the document before signing
By default, the user signing the document will not be prompted to confirm reading the document before signing. If this is not desired and the user needs to confirm the read, a "requestDocumentReadConfirm" parameter can be added to the "getTokenForDocument" call, with its value set to "true":
{
  "name": "minfin",
  "pwd":"U84SnLEQvp",
  "in":"test.pdf",
  "out":"signed_test.pdf",
  " requestDocumentReadConfirm": true,
}
[bookmark: _Toc94631789][bookmark: _Toc95480260]3.9. Restrict the users who are allowed to sign the document
By default, any user (presenting a valid certificate) is authorized to sign the document. If document signing should be restricted to a list of authorized users, an "allowedToSign" parameter can be added to the "getTokenForDocument" call. This parameter will define a list of national numbers (nn) authorized to sign the document. The "nn" (national number) must be formatted as defined in the subject's "SERIALNUMBER" certificate. Up to 8 "nn" entries are supported.
{
  "name": "minfin",
  "pwd":"U84SnLEQvp",
  "in":"test.pdf",
  "out":"signed_test.pdf",
  "allowedToSign": [
        {
            "nn": "12345678900"
        },
        {
            "nn": "01050399864"
        }
    ]
}
[bookmark: _Toc94631790][bookmark: _Toc95480261]3.10. Disabling downloads
Normally, the user signing the document is will be offered the signed version of the document at the end of the signing process. In case this is not desired, a “noDownload” parameter may be added to the “getTokenForDocument” call, with its value set to “true”:
	{
  "name": "minfin",
  "pwd":"U84SnLEQvp",
  "in":"test.pdf",
  "out":"signed_test.pdf",
  "noDownload": true,
}



A document signed in this way will still be uploaded to the BOSA S3 service, but its signed version will not be made available to the user through the BOSA signing service.
Please note that only the download of the signed version will be blocked. The unsigned version will still be made available, because the user needs to know what they are signing.
[bookmark: _Toc94631791][bookmark: _Toc95480262]3.11. Request a specific language when calling the service WEB UI
private static String LANGUAGE = "en"; // options: en, nl, fr, de
// 3. Do a redirect to the BOSA DSS front-end
// Format: Fout! De hyperlinkverwijzing is ongeldig.
System.out.println("\n3. Redirect to the BOSA DSS front-end");
String callbackURL = localUrl + "/callback?filename=" + outFileName;
System.out.println("  Callback: " + callbackURL);
String redirectUrl = bosaDssFrontend + "/sign/" + URLEncoder.encode(token) +
              "?redirectUrl=" + URLEncoder.encode(callbackURL) + "&language=" + LANGUAGE;
[bookmark: _Toc94631792][bookmark: _Toc95480263]3.12. Using XLST file
// 2. Do a 'getToken' request to the BOSA DSS
String json = "{\n" +
	"  \"name\":\"" + s3UserName + "\",\n" +
	"  \"pwd\":\""  + s3Passwd +   "\",\n" +
	"  \"in\":\""   + inFileName + "\",\n";
if (null != xsltFile)
	json += ( "  \"xslt\":\""   + xsltFile.getName() + "\",\n" );
 	json += "  \"out\":\""  + outFileName + "\",\n" +
	"  \"prof\":\"" + profileFor(inFileName) + "\"\n" +
"}";
[bookmark: _Toc94631793][bookmark: _Toc95480264]4. Sample/test FPS code and service
A simple Java service has been made that can serve as an example for the FPS.
It provides a simple ‘home page’ where the use can select a document to sign.
Then the sample service uploads this document, requests a token and does a redirect.
Finally a callback page is foreseen where the signed document is downloaded and the unsigned and signed document are deleted from the S3 server.
To build the sample: install maven and type the following on a command prompt:
    mvn package
To run the sample service on Linux/MacOSX:
    java -cp "target/lib/*":target/test_fps-0.0.1-SNAPSHOT.jar com.zetes.projects.bosa.testfps.Main
Or on Windows:
    java -cp "target/lib/*";target/test_fps-0.0.1-SNAPSHOT.jar com.zetes.projects.bosa.testfps.Main
When started successfully, the service will show the URL to which to surf to:
	Service started - press Ctrl-C to stop
Surf with your browser to http://localhost:8080



When the service starts, it reads configuration parameters from the config.txt file.
To actually be able to connect to the BOSA S3 service, an account should be requested from BOSA; and this account information (username and password) must be filled in this config file (i.e. replace the USERNAME_HERE and PASSWORD_HERE strings).
Demo service
The above code has been deployed and can be found at the following URL: [3].
[bookmark: _Toc94631794][bookmark: _Toc95480265]5. References
[1] MinIO: https://en.wikipedia.org/wiki/MinIO
[2] MinIO SDKs: https://docs.minio.io/  - select ‘MINIO SDKS’ on the left
[3] Sample/test FPS service: https://mintest.qa.fts.bosa.belgium.be
[4] https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
[5] https://ec.europa.eu/cefdigital/DSS/webapp-demo/apidocs/eu/europa/esig/dss/enumerations/VisualSignatureAlignmentHorizontal.html
[6]  https://ec.europa.eu/cefdigital/DSS/webapp-demo/apidocs/eu/europa/esig/dss/enumerations/VisualSignatureAlignmentVertical.html
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